Philadelphia University Faculty of Science

Department Mathematics Academic year 2023/2024

Course Syllabus

Ш

PHILADELPHIA

THE WAY TO THE FUTURE

UNIVERSITY

Credit hours 3 Bachelor

Issue:

Approval date:

Course Information

Course#	Course title			Prere	quisite
250442	Abstract Algebra 2			250)342
	Course type			time	Room
University R	□ University Requirement □ Faculty Requirement			Mon	21004
🛛 Major Requ	irement	\Box Elective \Box	9:45-	11:00	
Compulsory			Sun-	Wed	21005
1			12:40-	-13:55	

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Dr. Hani Kawariq	2824	2264	S/T/M/W 11:15- 12:15	hkawariq@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method					
⊠ Physical □ Online □ Blended					
Learning Model					
Percentage	Percentage Synchronous Asynchronous				
			100		

Course Description

This module is the second half of the undergraduate Abstract Algebra series, covering topics in rings and fields: integral domains, ideals, ring homomorphism, polynomial rings, extension fields, finite fields, algebraic extension, and some applications in classical geometry.

Course Learning Outcomes

Number	Learning Outcomes	Corresponding Program Outcomes		
	Knowledge			
K1	Understand the concepts of rings, integral domains, and fields.	Kp1		
K2	Understand the concept of an ideal , Homomorphism, and how to describe the elements of factor rings.	Kp2		

К3	Understand the concept of an irreducible polynomial and how to use it to construct a finite field.	Kp2
K4	Know the concepts of divisibility, primes, unique factorization domains, principal ideal domains and Euclidian Domains.	Kp2
	Skills	
S1	Understand mathematical definitions and demonstrate it in different examples.	Sp1
S2	Understand and able to rewrite proofs of theorems.	Sp1
	Competencies	
C1	Express thoughts in good logical writing.	Cp1
C2	Identify ambiguities in mathematical statements and overcome them.	Cp1

Learning Resources

Course textbook	Joseph A. Gallian, Contemporary Abstract Algebra 2021		
Supporting References	Lecture Notes "From Groups to Galois" 2022		
Supporting websites	https://www.philadelphia.edu.jo/academics/awitno		
Teaching Environment	⊠Classroom □ laboratory □Learning platform □Other		

Meetings and subjects timetable

Week	Торіс	Learning Methods	Tasks	Learning Material
1	Review of group theory	Lecture		Suggested Questions for Practice
2	Introduction to Rings	Lecture		Ch12: 1-63
3-4	Integral Domains	Lecture	Quiz 1	Ch13: 1, 2, 4, 6, 8, 13, 17- 19, 23, 25, 26, 28, 29, 31, 38, 39, 42, 43, 45, 46, 49, 50,51,62,63,7 0
5-6	Ideals and Factor Rings	Lecture	Quiz 2	Ch14: 4- 16, 20, 22, 26, 28, 30-32, 38, 40, 42, 45a, 48, 53- 56.
7-8	Ring Homomorphisms	Lecture		Ch15:6- 8, 11, 13, 14, 16, 18, 22, 24, 26-28, 32-37, 39, 45- 47, 51, 56, 59, 60.
9-10	Polynomial Rings	Lecture	Quiz 3	Ch 16: 5, 6, 8, 10, 13, 15,

				16, 18, 20, 18,
				20, 23-28, 31-
				36, 44-46, 49-
				51, 60,65.
	Factorization of Polynomials	Lecture		Ch17: 2, 3,
				6, 9-17 odd,
11-12				21- 23,25, 26,
				29-31, 38, 39,
				42, 43, 47.
	Divisibility in Integral Domains	Lecture	Quiz 4	Ch 18: 1-5, 8,
				12, 13-15,
13-14				17,18, 20-23,
				25, 27, 28, 30,
				31, 36.
	Extension Fields	Lecture		Ch 19 :1-
				6,9,13,15,17,
15				18,19,22-
				26,30,31,36,
				40,42,46-52
16	Final Exam			

 I6
 Final Exam

 * includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology
Communication skills
Improve the communication skills of the student by giving oral quizzes and discuss the assignments at the class
Application of concepts learnt

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	Week 6-8	K1,K2,S1,S2
Various Assessments *	30%	Continous	All of them
Final Exam	40%	Week 16	All of them
Total	100%		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes		Learning Method*	Assessment Method**
	K	nowledge		

II		_	
K1	Understand the concepts of rings, integral domains,	Lecture	Exam
	and fields.		
K2	Understand the concept of an ideal and how to	Lecture	Exam,Quiz
	describe the elements of its factor rings.		<i>,</i> –
K3	Understand the concept of an irreducible polynomial	Lecture	Exam,Quiz
	and how to use it to construct a finite field.		
K4	Know the concepts of divisibility, primes, unique	Lecture	Exam,
	factorization domains, principal ideal domains and		Quiz
	Euclidian Domains.		_
	Skills		
S1	Understand mathematical definitions and	Lecture	Quiz
	demonstrate it in different examples.		
S2	Understand and able to rewrite proofs of theorems.	Lecture	Exam
	Competencies		
C1	Express thoughts in good logical writing.	Problem	Assignment
		Solving	5
C2	Identify ambiguities in mathematical statements and	Discussion	Assignment
	overcome them.		8

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

** includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Course Polices

Policy	Policy Requirements				
Passing Grade	The minimum passing grade for the course is (50%) and the minimum final mark recorded on transcript is (35%).				
Missing Exams	 Missing an exam without a valid excuse will result in a zero grade to be assigned to the exam or assessment. A Student who misses an exam or scheduled assessment, for a legitimate reason, must submit an official written excuse within a week from the exam or assessment due date. 				
	 A student who has an excuse for missing a final exam should submit the excuse to the dean within three days of the missed exam date. 				
Attendance	The student is not allowed to be absent more than (15%) of the total hours prescribed for the course, which equates to six lectures days (M, W) and seven lectures (S,T,R). If the student misses more than (15%) of the total hours prescribed for the course without a satisfactory excuse accepted by the dean of the faculty, s/he will be prohibited from taking the final exam and the grade in that course is considered (zero), but if the absence is due to illness or a compulsive excuse accepted by the dean of the college, then withdrawal grade will be recorded.				
Academic Honesty	Philadelphia University pays special attention to the issue of academic integrity, and the penalties stipulated in the university's instructions are applied to those who are proven to have committed an act that violates academic integrity, such as: cheating, plagiarism (academic theft), collusion, and violating intellectual property rights.				

Program Learning Outcomes to be assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Kp1	Understand the concepts of rings, integral domains, and fields.			
Kp2	Understand the concept of an ideal and how to describe the elements of its factor rings, an irreducible polynomial and how to use it to construct a finite field, divisibility, primes, unique factorization domains, principal ideal domains and Euclidian Domains.			
Sp1	Use ring theory to solve several problems in field extension			

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
Kp1	Short quizzes mainly (1) with 10 points each
Kp2	Short quizzes mainly (3) with 10 points each
Sp1	Assignment

Assessment Rubric of the Program Learning Outcome