Philadelphia University	PHILADELPHIA UNIVERSITY	Approval date:
Faculty of Science		Issue:
Department Mathematics		Credit hours 3
Academic year 2023/2024	Course Syllabus	Bachelor

Course Information

Instructor Information

Name	Office No.	Phone No.	Office Hours	E-mail
Dr. Hani Kawariq	2824	2264	S/T/M/W 11:15- 12:15	hkawariq@philadelphia.edu.jo

Course Delivery Method

Course Delivery Method			
\boxtimes Physical	\square Online $\quad \square$ Blended		
Learning Model			
Percentage	Synchronous	Asynchronous	Physical
			$\mathbf{1 0 0}$

Course Description

This module is the second half of the undergraduate Abstract Algebra series, covering topics in rings and fields: integral domains, ideals, ring homomorphism, polynomial rings, extension fields, finite fields, algebraic extension, and some applications in classical geometry.

Course Learning Outcomes

Number	Learning Outcomes	Corresponding Program Outcomes
Knowledge		
K1	Understand the concepts of rings, integral domains, and fields.	Kp1
K2	Understand the concept of an ideal , Homomorphism, and how to describe the elements of factor rings.	Kp2

K3	Understand the concept of an irreducible polynomial and how to use it to construct a finite field.	Kp2	
K4	Know the concepts of divisibility, primes, unique factorization domains, principal ideal domains and Euclidian Domains.	Kp2	
Skills			
S1	Understand mathematical definitions and demonstrate it in different examples.	Sp1	
S2	Understand and able to rewrite proofs of theorems.	Sp1	
Competencies			
$\mathbf{C 1}$	Express thoughts in good logical writing.	Cp1	
$\mathbf{C 2}$	Identify ambiguities in mathematical statements and overcome them.	$\mathbf{C p 1}$	

Learning Resources

| Course textbook | Joseph A. Gallian, Contemporary Abstract Algebra 2021 |
| :--- | :--- | :--- |
| Supporting References | Lecture Notes "From Groups to Galois" 2022 |
| Supporting websites | https://www.philadelphia.edu.jo/academics/awitno |
| Teaching Environment | 区Classroom \square laboratory \square Learning platform $\quad \square$ Other |

Meetings and subjects timetable

Week	Topic	Learning Methods	Tasks	Learning Material
1	Review of group theory	Lecture		Suggested Questions for Practice
2	Introduction to Rings	Lecture		Ch12: 1-63
3-4	Integral Domains	Lecture	Quiz 1	$\begin{aligned} & \text { Ch13: } 1,2, \\ & 4,6,8,13,17- \\ & 19,23,25,26, \\ & 28,29,31,38, \\ & 39,42,43,45, \\ & 46,49, \\ & 50,51,62,63,7 \\ & 0 \end{aligned}$
5-6	Ideals and Factor Rings	Lecture	Quiz 2	$\begin{aligned} & \text { Ch14: 4-16, } \\ & \text { 20, 22, 26, 28, } \\ & 30-32,38,40, \\ & 42,45 a, 48, \\ & 53-56 . \end{aligned}$
7-8	Ring Homomorphisms	Lecture		Ch15:6-8, 11, $13,14,16,18$, 22, 24, 26-28, 32-37, 39, 4547, 51, 56, 59, 60.
9-10	Polynomial Rings	Lecture	Quiz 3	$\begin{aligned} & \text { Ch 16: } 5,6 \\ & 8,10,13,15, \end{aligned}$

				$\begin{aligned} & 16,18,20,18, \\ & 20,23-28,31- \\ & 36,44-46,49- \\ & 51,60,65 . \end{aligned}$
11-12	Factorization of Polynomials	Lecture		$\begin{aligned} & \text { Ch17 : 2, 3, } \\ & 6,9-17 \text { odd, } \\ & 21-23,25,26, \\ & 29-31,38,39, \\ & 42,43,47 . \end{aligned}$
13-14	Divisibility in Integral Domains	Lecture	Quiz 4	$\begin{aligned} & \text { Ch 18: } 1-5,8, \\ & 12,13-15, \\ & 17,18,20-23, \\ & 25,27,28,30, \\ & 31,36 . \end{aligned}$
15	Extension Fields	Lecture		$\begin{aligned} & \text { Ch } 19: 1- \\ & 6,9,13,15,17, \\ & 18,19,22- \\ & 26,30,31,36, \\ & 40,42,46-52 \\ & \hline \end{aligned}$
16	Final Exam			

* includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning

Course Contributing to Learner Skill Development

Using Technology

Communication skills

Improve the communication skills of the student by giving oral quizzes and discuss the assignments at the class

Application of concepts learnt

Assessment Methods and Grade Distribution

Assessment Methods	Grade Weight	Assessment Time (Week No.)	Link to Course Outcomes
Mid Term Exam	30%	Week 6-8	K1,K2,S1,S2
Various Assessments *	30%	Continous	All of them
Final Exam	40%	Week 16	All of them
Total	100%		

* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.

Alignment of Course Outcomes with Learning and Assessment Methods

Number	Learning Outcomes	Learning Method*	Assessment Method**
Knowledge			

K1	Understand the concepts of rings, integral domains, and fields.	Lecture	Exam
K2	Understand the concept of an ideal and how to describe the elements of its factor rings.	Lecture	Exam, Quiz
K3	Understand the concept of an irreducible polynomial and how to use it to construct a finite field.	Lecture	Exam, Quiz
K4	Know the concepts of divisibility, primes, unique factorization domains, principal ideal domains and Euclidian Domains.	Lecture	Exam, Quiz
Skills			
S1	Understand mathematical definitions and demonstrate it in different examples.	Lecture	Quiz
S2	Understand and able to rewrite proofs of theorems.	Lecture	Exam
Competencies			
C1	Express thoughts in good logical writing.	Problem Solving	Assignment
C2	Identify ambiguities in mathematical statements and overcome them.	Discussion	Assignment
includes: Lecture, flipped Class, project- based learning, problem solving based learning, collaborative learning			
* includes: quiz, in class and out of class assignment, presentations, reports, videotaped assignment, group or individual projects.			

Course Polices

| Policy | Policy Requirements |
| :--- | :--- | :--- |
| Passing Grade | The minimum passing grade for the course is (50\%) and the minimum final mark
 recorded on transcript is (35\%). |
| Missing Exams | Missing an exam without a valid excuse will result in a zero grade to be
 assigned to the exam or assessment.
 A Student who misses an exam or scheduled assessment, for a legitimate
 reason, must submit an official written excuse within a week from the exam
 or assessment due date. |
| AttendanceA student who has an excuse for missing a final exam should submit the
 excuse to the dean within three days of the missed exam date. | |
| The student is not allowed to be absent more than (15\%) of the total hours
 prescribed for the course, which equates to six lectures days (M, W) and seven
 lectures (S,T,R). If the student misses more than (15\%) of the total hours
 prescribed for the course without a satisfactory excuse accepted by the dean of
 the faculty, s/he will be prohibited from taking the final exam and the grade in
 that course is considered (zero), but if the absence is due to illness or a
 compulsive excuse accepted by the dean of the college, then withdrawal grade
 will be recorded. | |
| Academic
 Honesty
 Philadelphia University pays special attention to the issue of academic integrity,
 and the penalties stipulated in the university's instructions are applied to those
 who are proven to have committed an act that violates academic integrity, such
 as: cheating, plagiarism (academic theft), collusion, and violating intellectual
 property rights. | |

Program Learning Outcomes to be assessed in this Course

Number	Learning Outcome	Course Title	Assessment Method	Target Performance level
Kp1	Understand the concepts of rings, integral domains, and fields.			
Kp2	Understand the concept of an ideal and how to describe the elements of its factor rings, an irreducible polynomial and how to use it to construct a finite field, divisibility, primes, unique factorization domains, principal ideal domains and Euclidian Domains.			
Sp1	Use ring theory to solve several problems in field extension			

Description of Program Learning Outcome Assessment Method

Number	Detailed Description of Assessment
Kp1	Short quizzes mainly (1) with 10 points each
Kp2	Short quizzes mainly (3) with 10 points each
Sp1	Assignment

Assessment Rubric of the Program Learning Outcome

